资源类型

期刊论文 474

会议视频 4

年份

2023 55

2022 47

2021 38

2020 35

2019 20

2018 32

2017 28

2016 14

2015 34

2014 23

2013 16

2012 10

2011 14

2010 20

2009 11

2008 18

2007 27

2006 5

2005 3

2004 4

展开 ︾

关键词

催化剂 4

农业面源污染 2

大气污染 2

绿色化工 2

&alpha 1

1)幂模型 1

2R-1C模型;嵌入式系统;参数估计;非迭代方法;二次型 1

3D细胞容器 1

Beclin-1 1

CO2 加氢 1

GIS 1

GM(1 1

H2S 1

K 助剂 1

Key technology 1

MOF基催化剂 1

Mn 助剂 1

P4 1

PH3 1

展开 ︾

检索范围:

排序: 展示方式:

Zinc modification of Ni-Ti as efficient NiZnTi catalysts with both geometric and electronic improvements for hydrogenation of nitroaromatics

《化学科学与工程前沿(英文)》 2022年 第16卷 第4期   页码 461-474 doi: 10.1007/s11705-021-2072-8

摘要: The catalytic hydrogenation of nitroaromatics is an environmentally friendly technology for aniline production, and it is crucial to develop noble-metal-free catalysts that can achieve chemoselective hydrogenation of nitroaromatics under mild reaction conditions. In this work, zinc-modified Ni-Ti catalysts (NixZnyTi1) were fabricated and applied for the hydrogenation of nitroaromatics hydrogenation. It was found that the introduction of zinc effectively increases the surface Ni density, enhances the electronic effect, and improves the interaction between Ni and TiO2, resulting in smaller Ni particle size, more oxygen vacancies, higher dispersion and greater concentration of Ni on the catalyst surface. Furthermore, the electron-rich Niδ obtained by electron transfer from Zn and Ti to Ni effectively adsorbs and dissociates hydrogen. The results reveal that NixZnyTi1 (Ni0.5Zn0.5Ti1) shows excellent catalytic performance under mild conditions (70 °C and 6 bar). These findings provide a rational strategy for the development of highly active non-noble-metal hydrogenation catalysts.

关键词: bimetal strategy     oxygen vacancy     non-noble metal catalyst     hydrogenation     aromatic nitro compounds    

Highly uniform Ni particles with phosphorus and adjacent defects catalyze 1,5-dinitronaphthalene hydrogenation with excellent catalytic performance

Wei Xiong, Susu Zhou, Zeyong Zhao, Fang Hao, Zhihui Cai, Pingle Liu, Hailiang Zhang, Hean Luo

《化学科学与工程前沿(英文)》 2021年 第15卷 第4期   页码 998-1007 doi: 10.1007/s11705-020-1994-x

摘要: This work proposes a modified activated carbon support, with defects and heteroatoms (N,P-ACs) by nitrogen and phosphorus doping to load non-noble nickel to catalyze aromatic compound hydrogenation. The Ni/N,P-ACs-900 (prepared at 900 °C) showed promising catalytic activity in liquid-phase 1,5-dinitronaphthalene hydrogenation with a 1,5-diaminonaphthalene yield of 95.8% under the mild condition of 100 °C, which is comparable to the commercial Pd/C catalyst. The nitrogen species were burned off at 900 °C, causing more defects for nickel metal loading, facilitating the interaction between the supports and the nickel metal, and resulting in highly dispersed metal particles. The computational study of the nickel binding energy has been conducted using density functional theory. It exhibits that the defects formed by heteroatom doping are beneficial to nickel anchoring and deposition to form highly uniform nickel particles. The phosphorus species in combination with the defects are suitable for H adsorption and dissociation. These results reveal that the heteroatomic doping on the active carbon shows significant effects in the hydrogenation of the liquid-phase aromatic compounds. These findings could provide a promising route for the rational design of aromatic compound hydrogenation catalysts to significantly decrease the cost by instead using noble metal catalysts in the industry.

关键词: nitrogen and phosphorus doping     non-noble nickel catalyst     aromatic compounds hydrogenation    

Hydro-pyrolysis of lignocellulosic biomass over alumina supported Platinum, Mo

Songbo He, Jeffrey Boom, Rolf van der Gaast, K. Seshan

《化学科学与工程前沿(英文)》 2018年 第12卷 第1期   页码 155-161 doi: 10.1007/s11705-017-1655-x

摘要: In-line hydro-treatment of bio-oil vapor from fast pyrolysis of lignocellulosic biomass (hydro-pyrolysis of biomass) is studied as a method of upgrading the liquefied bio-oil for a possible precursor to green fuels. The nobel metal (Pt) and non-noble metal catalysts (Mo C and WC) were compared at 500 °C and atmospheric pressure which are same as the reaction conditions for fast pyrolysis of biomass. Results indicated that under the pyrolysis conditions, the major components, such as acids and carbonyls, of the fast pyrolysis bio-oil can be completely and partially hydrogenated to form hydrocarbons, an ideal fossil fuel blend, in the hydro-treated bio-oil. The carbide catalysts perform equally well as the Pt catalyst regarding to the aliphatic and aromatic hydrocarbon formation (ca. 60%), showing the feasibility of using the cheap non-noble catalysts for hydro-pyrolysis of biomass.

关键词: bio-oil     pyrolysis     hydro-deoxygenation (HDO)     non-noble metal catalysts     hydro-treatment    

Catalytic activity of noble metal nanoparticles toward hydrodechlorination: influence of catalyst electronic

Man ZHANG,Feng HE,Dongye ZHAO

《环境科学与工程前沿(英文)》 2015年 第9卷 第5期   页码 888-896 doi: 10.1007/s11783-015-0774-1

摘要: In this study, stabilized Pd, Pt and Au nanoparticles were successfully prepared in aqueous phase using sodium carboxymethyl cellulose (CMC) as a capping agent. These metal nanoparticles were then tested for catalytic hydrodechlorination toward two classes of organochlorinated compounds (vinyl polychlorides including trichloroethylene (TCE), tetrachloroethylene (PCE), and alkyl polychlorides including 1,1,1-trichloroethane (1,1,1-TCA), and 1,1,1,2-tetrachloroethane (1,1,1,2-TeCA)) to determine the rate-limiting steps and to explore the reaction mechanisms. The surface area normalized reaction rate constant, , showed a systematic dependence on the electronic structure (the density of states at the Fermi level) of the metals, suggesting that adsorption of organochlorinated reactants on the metal catalyst surfaces is the rate-limiting step for catalytic hydrodechlorination. Hydrodechlorination rates of 1,1,1-TCA and 1,1,1,2-TeCA agreed with the bond strength of the first (weakest) dissociated C-Cl bond, suggesting that C-Cl bond cleavage, which is the first step for dissociative adsorption of the alkyl polychlorides, controlled the catalytic hydrodechlorination rate. However, hydrodechlorination rates of TCE and PCE correlated with the adsorption energies of their molecular (non-dissociative) adsorption on the noble metals rather than with the first C-Cl bond strength, suggesting that molecular adsorption governs the reaction rate for hydrodechlorination of the vinyl polychlorides.

关键词: catalytic hydrodechlorination     electronic structure     metal nanoparticles     reaction mechanisms    

Effects of preparation methods of support on the properties of nickel catalyst for hydrogenation of m-dinitrobenzene

LIU Yingxin, WEI Zuojun, CHEN Jixiang, ZHANG Jiyan

《化学科学与工程前沿(英文)》 2007年 第1卷 第3期   页码 287-291 doi: 10.1007/s11705-007-0052-2

摘要: Using tetraethyl orthosilicate (TEOS) as the precursor of silica, the silica aerogel and xerogel, which were used as supports of nickel-based catalysts for liquid hydrogenation of -dinitrobenzene to -phenylenediamine, were prepared by the sol-gel method combined with supercritical drying (SCD) and conventional drying, respectively. Then, a series of nickel-based catalyst samples supported on these supports were prepared by the incipient wetness impregnation method with an aqueous solution of nickel nitrate as well as lanthanum nitrate as impregnation liquids. Based on the characterization results of nitrogen adsorption-desorption (BET), X-ray diffraction (XRD), temperature programmed reduction (TPR), temperature-programmed desorption of hydrogen (H-TPD), and catalytic activity evaluation, the physico-chemical properties and catalytic performances of the catalysts were investigated. The results show that the nickel crystallites on the binary nickel catalyst using silica aerogel as support are of smaller particle size. However, compared with the sample supported on silica xerogel, the nickel catalyst supported on the silica aerogel exhibits lower activity and selectivity for the hydrogenation of -dinitrobenzene because it has a lesser amount of active sites and weaker absorption ability to reactants caused by sintering of the nickel crystallites. The addition of promoter LaO could increase the activity and selectivity of the catalysts. Among all the nickel-based catalyst samples prepared, the LaO promoted ternary nickel-based catalyst supported on silica xerogel exhibits the highest activity and selectivity for the hydrogenation of -dinitrobenzene to -phenylenediamine, which could be attributed to its highest active surface area and appropriate absorption strength to reactants. Over this promising catalyst, the conversion of -dinitrobenzene and the yield of -phenylenediamine could reach 97.0% and 93.1%, respectively, under proper reaction conditions of hydrogen pressure 2.6 MPa, temperature 373 K, and reaction time 1 h.

Polymerization of methyl methacrylate catalyzed by mono-/bis-salicylaldiminato nickel(II) complexes and

Jihong LU, Danfeng ZHANG, Qian CHEN, Buwei YU

《化学科学与工程前沿(英文)》 2011年 第5卷 第1期   页码 19-25 doi: 10.1007/s11705-010-0546-1

摘要: Two types of salicylaldiminato-based nickel complexes, mono-ligated Ni(II) complexes ([O-C H - - C(H)=N-Ar]Ni(PPh )(Ph) ( ), [O-(3,5-Br )C H - -C(H)=N-Ar]Ni(PPh )(Ph) ( ), [O-(3- -Bu)C H - -C(H)=N-Ar]Ni(PPh )(Ph) ( )) and bis-ligated Ni(II) complexes ([O-(3,5-Br )C H - -C(H)=N-Ar] Ni ( ), [O-(3,5-Br )C H - -C(H)=N-2-C H (PhO)] Ni ( ), Ar=2,6-C H ( -Pr) ) were synthesized and characterized by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), mass spectrography (MS) and elemental analysis (EA). In the presence of methylaluminoxane (MAO) as cocatalyst, all the nickel complexes exhibited high activities for the polymerization of methyl methacrylate (MMA) and syndiotactic-rich poly(methyl methacrylate) (PMMA) was obtained. The complexes with less bulky substituents on salicylaldiminato framework possessed higher activities, while with the same salicylaldiminato, the mono-ligated nickel complexes showed higher catalytic activity than bis-ligated ones.

关键词: late transition metal catalyst     methyl methacrylate     polymerization     salicylaldiminato nickel complexes     methylaluminoxane     syndiotactic structure    

Exploration of the oxygen transport behavior in non-precious metal catalyst-based cathode catalyst layer

Shiqu CHEN, Silei XIANG, Zehao TAN, Huiyuan LI, Xiaohui YAN, Jiewei YIN, Shuiyun SHEN, Junliang ZHANG

《能源前沿(英文)》 2023年 第17卷 第1期   页码 123-133 doi: 10.1007/s11708-022-0849-1

摘要: High cost has undoubtedly become the biggest obstacle to the commercialization of proton exchange membrane fuel cells (PEMFCs), in which Pt-based catalysts employed in the cathodic catalyst layer (CCL) account for the major portion of the cost. Although non-precious metal catalysts (NPMCs) show appreciable activity and stability in the oxygen reduction reaction (ORR), the performance of fuel cells based on NPMCs remains unsatisfactory compared to those using Pt-based CCL. Therefore, most studies on NPMC-based fuel cells focus on developing highly active catalysts rather than facilitating oxygen transport. In this work, the oxygen transport behavior in CCLs based on highly active Fe-N-C catalysts is comprehensively explored through the elaborate design of two types of membrane electrode structures, one containing low-Pt-based CCL and NPMC-based dummy catalyst layer (DCL) and the other containing only the NPMC-based CCL. Using Zn-N-C based DCLs of different thickness, the bulk oxygen transport resistance at the unit thickness in NPMC-based CCL was quantified via the limiting current method combined with linear fitting analysis. Then, the local and bulk resistances in NPMC-based CCLs were quantified via the limiting current method and scanning electron microscopy, respectively. Results show that the ratios of local and bulk oxygen transport resistances in NPMC-based CCL are 80% and 20%, respectively, and that an enhancement of local oxygen transport is critical to greatly improve the performance of NPMC-based PEMFCs. Furthermore, the activity of active sites per unit in NPMC-based CCLs was determined to be lower than that in the Pt-based CCL, thus explaining worse cell performance of NPMC-based membrane electrode assemblys (MEAs). It is believed that the development of NPMC-based PEMFCs should proceed not only through the design of catalysts with higher activity but also through the improvement of oxygen transport in the CCL.

关键词: proton exchange membrane fuel cells (PEMFCs)     non-precious metal catalyst (NPMC)     cathode catalyst layer (CCL)     local and bulk oxygen transport resistance    

Steam reforming of toluene as a tar model compound with modified nickel-based catalyst

Omeralfaroug KHALIFA, Mingxin XU, Rongjun ZHANG, Tahir IQBAL, Mingfeng LI, Qiang LU

《能源前沿(英文)》 2022年 第16卷 第3期   页码 492-501 doi: 10.1007/s11708-021-0721-8

摘要: Catalytic steam reforming is a promising route for tar conversion to high energy syngas in the process of biomass gasification. However, the catalyst deactivation caused by the deposition of residual carbon is still a major challenge. In this paper, a modified Ni-based Ni-Co/Al O -CaO (Ni-Co/AC) catalyst and a conventional Ni/Al O (Ni/A) catalyst were prepared and tested for tar catalytic removal in which toluene was selected as the model component. Experiments were conducted to reveal the influences of the reaction temperature and the ratio between steam to carbon on the toluene conversion and the hydrogen yield. The physicochemical properties of the modified Ni-based catalyst were determined by a series of characterization methods. The results indicated that the Ni-Co alloy was determined over the Ni-Co/AC catalyst. The doping of CaO and the presence of Ni-Co alloy promoted the performance of toluene catalytic dissociation over Ni-Co/AC catalyst compared with that over Ni/A catalyst. After testing in steam for 40 h, the carbon conversion over Ni-Co/AC maintained above 86% and its resistance to carbon deposition was superior to Ni/A catalyst.

关键词: catalytic steam reforming     tar model compound     Ni-based catalyst     carbon resistance    

Hollow carbon spheres and their noble metal-free hybrids in catalysis

《化学科学与工程前沿(英文)》 2021年 第15卷 第6期   页码 1380-1407 doi: 10.1007/s11705-021-2097-z

摘要: Hollow carbon spheres have garnered great interest owing to their high surface area, large surface-to-volume ratio and reduced transmission lengths. Herein, we overview hollow carbon sphere-based materials and their noble metal-free hybrids in catalysis. Firstly, we summarize the key fabrication techniques for various kinds of hollow carbon spheres, with a particular emphasis on controlling pore structure and surface morphology, and then heterogeneous doping as well as their metal-free/containing hybrids are presented; next, possible applications for non-noble metal/hollow carbon sphere hybrids in the area of energy-related catalysis, including oxygen reduction reaction, hydrogen evolution reaction, oxygen evolution reaction, water splitting, rechargeable Zn-air batteries and pollutant degradation are discussed; finally, we introduce the various challenges and opportunities offered by hollow carbon spheres from the perspective of synthesis and catalysis.

关键词: hollow carbon spheres     functionalization     noble metal-free     catalysis    

用于CO甲烷化的Ni/CeO2催化剂还原过程重构行为调控研究 Article

曹昕宇, 浦天成, Bar Mosevitzky Lis, Israel E. Wachs, 彭冲, 朱明辉, 胡永康

《工程(英文)》 2022年 第14卷 第7期   页码 94-99 doi: 10.1016/j.eng.2021.08.023

摘要:

还原预处理是活化负载型金属催化剂的重要步骤,但很少受到关注。本研究发现负载型镍催化剂的重构过程对预处理条件非常敏感。与使用氢气的传统活化方式相比,用合成气活化催化剂可以产生具有多晶结构的负载型镍纳米颗粒,其中包含丰富的晶界。独特的活化方式使得催化剂上CO吸附得到增强,提高了CO甲烷化率。通过操纵活化条件来调整催化剂结构的策略也可以被用于指导其他负载型金属催化剂的理性设计。

关键词: 镍-氧化铈催化剂     催化剂活化     结晶性     甲烷化     原位谱学    

Shape/size controlling syntheses, properties and applications of two-dimensional noble metal nanocrystals

Baozhen An,Mingjie Li,Jialin Wang,Chaoxu Li

《化学科学与工程前沿(英文)》 2016年 第10卷 第3期   页码 360-382 doi: 10.1007/s11705-016-1576-0

摘要: Two dimensional (2D) nanocrystals of noble metals (e.g., Au, Ag, Pt) often have unique structural and environmental properties which make them useful for applications in electronics, optics, sensors and biomedicines. In recent years, there has been a focus on discovering the fundamental mechanisms which govern the synthesis of the diverse geometries of these 2D metal nanocrystals (e.g., shapes, thickness, and lateral sizes). This has resulted in being able to better control the properties of these 2D structures for specific applications. In this review, a brief historical survey of the intrinsic anisotropic properties and quantum size effects of 2D noble metal nanocrystals is given and then a summary of synthetic approaches to control their shapes and sizes is presented. The unique properties and fascinating applications of these nanocrystals are also discussed.

关键词: two-dimension     noble metal     nanocrystal     surface plasmon     controllable synthesis    

Effect of noble metal nanoparticle size on C–N bond cleavage performance in hydrodenitrogenation: a study

《化学科学与工程前沿(英文)》 2023年 第17卷 第12期   页码 1986-2000 doi: 10.1007/s11705-023-2337-5

摘要: Breakage of the C–N bond is a structure sensitive process, and the catalyst size significantly affects its activity. On the active metal nanoparticle scale, the role of catalyst size in C–N bond cleavage has not been clearly elucidated. So, Ru catalysts with variable nanoparticle sizes were obtained by modulating the reduction temperature, and the catalytic activity was evaluated using 1,2,3,4-tetrahydroquinoline and o-propylaniline with different C–N bond hybridization patterns as reactants. Results showed a 13 times higher reaction rate for sp3-hybridized C–N bond cleavage than sp2-hybridized C–N bond cleavage, while the reaction rate tended to increase first and then decrease as the catalyst nanoparticle size increased. Different concentrations of terrace, step, and corner sites were found in different sizes of Ru nanoparticles. The relationship between catalytic site variation and C–N bond cleavage activity was further investigated by calculating the turnover frequency values for each site. This analysis indicates that the variation of different sites on the catalyst is the intrinsic factor of the size dependence of C–N bond cleavage activity, and the step atoms are the active sites for the C–N bond cleavage. When Ru nanoparticles are smaller than 1.9 nm, they have a strong adsorption effect on the reactants, which will affect the catalytic performance of the Ru catalyst. Furthermore, these findings were also confirmed on other metallic Pd/Pt catalysts. The role of step sites in C–N bond cleavage was proposed using the density function theory calculations. The reactants have stronger adsorption energies on the step atoms, and step atoms have d-band center nearer to the Fermi level. In this case, the interaction with the reactant is stronger, which is beneficial for activating the C–N bond of the reactant.

关键词: sp3/sp2-hybridized C–N bond     noble metal nanoparticle     catalytic active site     turnover frequency     DFT    

Ni-Bi 助剂用于α-Fe2O3 Letter

党珂,王拓,李澄澄,张冀杰,刘珊珊,巩金龙

《工程(英文)》 2017年 第3卷 第3期   页码 285-289 doi: 10.1016/J.ENG.2017.03.005

摘要:

本文提出了镍-硼酸(Ni-Bi) 助催化剂负载于α 型三氧化二铁(Fe2O3) 具有提升表面动力学和钝化表面态的双重作用。Ni-Bi助剂的负载使Fe2O3 光电阳极的光电流起始电位产生230 mV 的负移,1.23 V(vs. RHE)下的光电流密度也提升了2.3 倍。Ni-Bi助剂层中的Bi 促进了产氧反应的脱质子步骤。

关键词: 镍-硼酸     &alpha     型三氧化二铁     产氧反应     助催化剂    

Activated carbon induced oxygen vacancies-engineered nickel ferrite with enhanced conductivity for supercapacitor

《化学科学与工程前沿(英文)》 2023年 第17卷 第12期   页码 2088-2100 doi: 10.1007/s11705-023-2352-6

摘要: Activated carbon induced oxygen vacancies-engineered nickel ferrite with enhanced conductivity for supercapacitor application

关键词: nickel ferrite conductivity     carbon oxygen vacancies    

Enabling nickel ferrocyanide nanoparticles for high-performance ammonium ion storage

《化学科学与工程前沿(英文)》 2023年 第17卷 第2期   页码 226-235 doi: 10.1007/s11705-022-2198-3

摘要: Prussian blue and its analogs are extensively investigated as a cathode for ammonium-ion batteries. However, they often suffer from poor electronic conductivity. Here, we report a Ni2Fe(CN)6/multiwalled carbon nanotube composite electrode material, which is prepared using a simple coprecipitation approach. The obtained material consists of nanoparticles with sizes 30–50 nm and the multiwalled carbon nanotube embedded in it. The existence of multiwalled carbon nanotube ensures that the Ni2Fe(CN)6/multiwalled carbon nanotube composite shows excellent electrochemical performance, achieving a discharge capacity of 55.1 mAh·g–1 at 1 C and 43.2 mAh·g–1 even at 15 C. An increase in the ammonium-ion diffusion coefficient and ionic/electron conductivity based on kinetic investigations accounts for their high performance. Furthermore, detailed ex situ characterizations demonstrate that Ni2Fe(CN)6/multiwalled carbon nanotube composite offers three advantages: negligible lattice expansion during cycling, stable structure, and the reversible redox couple. Therefore, the Ni2Fe(CN)6/multiwalled carbon nanotube composite presents a long cycling life and high rate capacity. Finally, our study reports a desirable material for ammonium-ion batteries and provides a practical approach for improving the electrochemical performance of Prussian blue and its analogs.

关键词: nickel ferrocyanides     NH4+     electrochemistry     Prussian blue     aqueous ammonium ion batteries    

标题 作者 时间 类型 操作

Zinc modification of Ni-Ti as efficient NiZnTi catalysts with both geometric and electronic improvements for hydrogenation of nitroaromatics

期刊论文

Highly uniform Ni particles with phosphorus and adjacent defects catalyze 1,5-dinitronaphthalene hydrogenation with excellent catalytic performance

Wei Xiong, Susu Zhou, Zeyong Zhao, Fang Hao, Zhihui Cai, Pingle Liu, Hailiang Zhang, Hean Luo

期刊论文

Hydro-pyrolysis of lignocellulosic biomass over alumina supported Platinum, Mo

Songbo He, Jeffrey Boom, Rolf van der Gaast, K. Seshan

期刊论文

Catalytic activity of noble metal nanoparticles toward hydrodechlorination: influence of catalyst electronic

Man ZHANG,Feng HE,Dongye ZHAO

期刊论文

Effects of preparation methods of support on the properties of nickel catalyst for hydrogenation of m-dinitrobenzene

LIU Yingxin, WEI Zuojun, CHEN Jixiang, ZHANG Jiyan

期刊论文

Polymerization of methyl methacrylate catalyzed by mono-/bis-salicylaldiminato nickel(II) complexes and

Jihong LU, Danfeng ZHANG, Qian CHEN, Buwei YU

期刊论文

Exploration of the oxygen transport behavior in non-precious metal catalyst-based cathode catalyst layer

Shiqu CHEN, Silei XIANG, Zehao TAN, Huiyuan LI, Xiaohui YAN, Jiewei YIN, Shuiyun SHEN, Junliang ZHANG

期刊论文

Steam reforming of toluene as a tar model compound with modified nickel-based catalyst

Omeralfaroug KHALIFA, Mingxin XU, Rongjun ZHANG, Tahir IQBAL, Mingfeng LI, Qiang LU

期刊论文

Hollow carbon spheres and their noble metal-free hybrids in catalysis

期刊论文

用于CO甲烷化的Ni/CeO2催化剂还原过程重构行为调控研究

曹昕宇, 浦天成, Bar Mosevitzky Lis, Israel E. Wachs, 彭冲, 朱明辉, 胡永康

期刊论文

Shape/size controlling syntheses, properties and applications of two-dimensional noble metal nanocrystals

Baozhen An,Mingjie Li,Jialin Wang,Chaoxu Li

期刊论文

Effect of noble metal nanoparticle size on C–N bond cleavage performance in hydrodenitrogenation: a study

期刊论文

Ni-Bi 助剂用于α-Fe2O3

党珂,王拓,李澄澄,张冀杰,刘珊珊,巩金龙

期刊论文

Activated carbon induced oxygen vacancies-engineered nickel ferrite with enhanced conductivity for supercapacitor

期刊论文

Enabling nickel ferrocyanide nanoparticles for high-performance ammonium ion storage

期刊论文